

Copyright © 2002 Pixelmetrix Corporation Page 1

Pixelmetrix
c o r p o r a t i o n

Application Note – AN102

Computer Controlled Monitoring using CORBA

Ivan Ng
Software Project Manager, Pixelmetrix Corporation

Providing effective and efficient monitoring of today’s broadcast networks requires not only manual control via local
or remote interfaces, but often requires integration with other systems for the exchange of performance data. For
example, quality management systems based on Oracle databases, subscriber management, and or conditional access
systems.
In addition to local and remote control interfaces, DVStation provides an open-standards interface based on CORBA
which allows other

computer

 systems to control and obtain performance information.

Background

DVStation provides
concurrent and multi-
user control – both
through a local interface
and via remote control
for monitoring digital
television networks.

Remote control means
that both configuration
and results must be obtained over the internet or
corporate LAN. Remote control can be via direct user
control – for example using a web browser – or via
direct control from a computer.

Since a remote application can be written in a variety of
languages, such as C++ or Java, running on various
operating systems, and different network types such as
ethernet or token-ring can be used, using a

middleware

layer allows remote applications to retrieve monitoring
results, as well as configure operating and alarm
parameters — without having to worry about the
specifics of the hardware, operating system, language,
or network type used. CORBA is the answer.

CORBA allows remote applications, through the help of
an ORB (Object Request Broker) which handles
communication, to access monitoring results as objects
in the language that the application was written. If a
remote application is written in C++, information will be
packaged in a C++ object for the application to retrieve
and display. If a remote application is written in Java,
information will be packaged in a Java object for the
application to retrieve and display.

This is possible by publishing IDL (Interface Definition
Language) files, which describes the parameters
available to the CORBA client for retrieval and
configuration. Each IDL file describes an interface to a
database object describing a logical grouping of
information for a particular measurement or
configuration. IDL is independent of any programming
language and is supported by many different languages
(eg C++, Java).

DVStation uses the TAO ORB, which comes with ACE
(Adaptive Communication Environment), for its CORBA
support.

DVStation Software Architecture

DVStation employs multi-process architecture, dividing
tasks between user/program interfacing and data
collection, correlation, and storage.

Specifically, there are three processes involved in
automating DVStation operations through CORBA:

•

DvMain

. The CORBA server and contains the
measurement and configuration data objects.
This process communicates with the card
modules to obtain raw measurement data and
results. Measurement results are written to
database objects to be retrieved by various
interface clients for display or processing.
During the creation of the database object,
DvMain also registers an object reference with
the naming service using a unique key so that
remote CORBA clients are able to retrieve the
contents of the database object.

•

DVNaming_Service

. The naming service
program which provides remote CORBA clients
references to database objects within DvMain.
Basically, it provides a look up service which
allows CORBA clients to locate a particular
database object using a unique key. A CORBA
client can use an object reference to retrieve
results within, or to configure parameters of, a
database object.

•

The CORBA Client.

 The client software runs
either on DVStation itself or on a remotely
connected computer.

Signal
Processing

Device I/F Data Analyzer

Data Object Repository

Object Broker

HTML SNMPX Windows

Local Display Web Browser NMS

Custom

Other systems

Modulator

Input

Signal
Processing

Input

Page 2 Copyright © 2002 Pixelmetrix Corporation

How to write a CORBA Client for DvStation

The following section addresses some of the issue in
writing a CORBA client with the assumption the
developer has sufficient familiarity in CORBA and basic
programming techniques.

First of all, current versions of the IDL files which match
the version of correct version of DVStation system
software are required. These files are contained within
the file system of each DVStation and are automatically
updated with each software revision. To get more
information on how to retrieve these files or about
DVStation software in general please contact
support@pixelmetrix.com.

What information does a Client need to get the initial
naming context of the naming service?

First of all, a CORBA client must obtain the initial
naming context of the naming service. It needs to
determine the endpoint of the naming service, which is
made up of 2 parts: The IP address and the port
number. By default, DVStation is shipped with an IP
address of 192.168.15.150 – this address can be changed
via the Network settings panel in the configuration
menu of DVStation. The port number for the naming
service is fixed at 2740.

How to obtain the object reference of a database
object?

Provided the CORBA client has already obtained the
initial naming context of the naming service, the client
would then need to know the key of the database object
which was used in its registration with the naming
service.

A key used in the naming service is made up of one or
more parts. The first part of the key is always the name
of the database object. System level database objects not
tied to a port or slot usually only have one part to the
key, which is the name. The second part of the key
usually indicates the port or slot number.

In rare cases, more complicated database objects might
have multiple parts in the naming service key.

Tips for Working with Object References

Instead of querying the object reference to a database
object each time it is required, store it somewhere so it
can be used again later. If the object reference becomes
invalid (eg. DvMain being restarted), then query the
object reference of the database object from the naming
service again. If the initial naming context of the naming
service becomes invalid (eg Naming Service restarted),
then query the initial naming context of the naming
service before querying the database object reference.

Note that if a reference becomes invalid, a CORBA
exception will be thrown when attempting to call a API
with the invalid object reference. The CORBA client
application will be notified of the exception.

Structure of DVStation IDL Files

Each IDL file contains only one interface. IDL files are
being constantly updated to match the evolution of the
DVStation System Software, an overview of each IDL
file, the name of the interface, and a short description of
the purpose of the object is included below. Naturally,
exist for the other modules in the system, i.e. COFDM,
QPSK,

etc.

Additionally, the details of the various attributes/
structures in the IDL file is documented in the IDL file
itself as well as the naming service key which is also
documented in the IDL file.

CORBA
Client

DvNaming_Service

TAO
ORB

Get initial naming context
and object references

Get and Set Data

DvMain

System Level Interfaces

Interface Description

DvCommon Common typedef, structure and constant

DvCommonDef Common typedef and enum

DvAlarmActionList List of alarm actions supported

DvCardName Names of the various card modules

DvDateTime Current date/time and timezone informa-
tion

DvHWMetrics Hardware metrics parameter

DvLogIntervalConfigSetBC Interval between logging of the following:
• Bandwidth
• Packet interval
• PCR measurement
• QMM
• QAM
• QPSK
• COFDM

DvLogParameters Maximum number of log files and log file
size to configure

DvLogMessage The 40 most recent log messages

DvPortConfig The configuration for each port

DvPortStatus The status of each port

DvProfileList The list of system and stream level pro-
files

DvRackConfig The system level parameters in DVStation

DvScheduleFileList The schedule for loading profiles

Copyright © 2002 Pixelmetrix Corporation Page 3

Example IDL File

The example below shows the IDL file describing the
port status data object. The port status object contains
the status of each layer of the protocol stack: Physical,
MPEG-2 Transport Layer, PSI information, and Program
Content.

//
// Name : DvPortStatus.idl
// Description : IDL file for DvPortStatus interface
// The port status in DVStation
// Key used in naming service :
// 1) "PortStatus"
// 2) Port number
// Author : Ivan Ng
//
#ifndef __DVPORTSTATUS_IDL__
#define __DVPORTSTATUS_IDL__
#include "DvCommon.idl"
module sys
{

// The structure containing the port status
struct DvPortStatusStruct
{

// The status of the physical layer
unsigned short phyLayer;
// The status of the transport layer
unsigned short transportLayer;
// The status of the elementary layer
unsigned short elementaryLayer;
// The status of the video quality layer
unsigned short videoqualityLayer;
// The state of the port
unsigned short portState;
// The percentage of bandwidth by non-stuffing packets
unsigned short bwPercent;
// Whether the bandwidth threshold has exceeded
boolean thresholdExceeded;

};

interface DvPortStatus
{

// Get the port status in DVStation
DvPortStatusStruct getPortStatusStruct();

};
};
#endif

References

“Measurement Guidelines for DVB Systems”, Draft
TR 101 290, DVB.

Additionally, the following websites:

http://www.infosys.tuwien.ac.at/Research/Corba/docu.html
http://developer.netscape.com/docs/manuals/corba.html
http://www.cs.wustl.edu/docs/manuals/corba.html
http://www.isg.sfu.ca/~hak/corba/
http://www.cbbrowne.com/info/corba.html

Transport Stream Level Interfaces

Interface Description

DvBWAlarmConfigSettingBC The alarm and threshold setting for the
bandwidth of each PID.

DvBWChannelService ID and name of each service being moni-
tored. Used with DvBandWidthBC.

DvBWMeasureSet The bandwidth measurement set

DvBandWidthBC The bandwidth of the PIDs being moni-
tored. (Requires the use of DvPIDPer-
Channel to get the PID of each channel.)

The bandwidth of all services being mon-
itored. (Requires the use of DvBWChan-
nelService to get the service name of
each channel.)

DvDecodedTSPacket Decoded transport stream packet (PID)

DvDecodedTSPacketSet Information about a set of TS packets

DvETR290ConfigSetBC ETR-290 Alarm Configuration:
• CAT error
• CRC error
• Continuity count error
• RST error
• Sync byte error
• Sync loss error
• Transport error

DvETR290Error The status of each ETR290 parameter

DvJitterAlarmSet Alarm configuration set for PCR Jitter

DvJitterMeasureSet PCR Jitter measurement set

DvPCRConfigSet ETR290 PCR Jitter Alarm configuration

DvPIDPerChannel The PID for each bandwidth channel in
DvBandwidthBC (Bandwidth)

DvPSIServices PSI service structure of current transport
stream: service names for each PID, list
of unreferenced PIDs, and list of PCR
PIDs.

DvPktIntAlarmSet Packet Interval Alarm configuration

DvPktIntHistogram Packet Interval Histogram

DvPktIntMeasureSet PCR Jitter measurement set

DvServiceStructure Service structure template information

DvSSMAlarmSet Service structure alarm configuration
objects

DvSIRepetitionConfigSet Alarm configuration setting for SI Repeti-
tion of ETR290

DvTsCapture Parameters for transport stream capture.
Used to start or abort a transport stream
capture

DvTSPSlotConfig The TSP slot configuration

DvTotalPIDBW The number of TS packets collected for
each PID over 1 PID statistical report.

DvUnreferencedPIDConfigSet Alarm configuration setting for unrefer-
enced PID of ETR290. Set of unreferenced
PIDs to mask off.

Page 4 Copyright © 2002 Pixelmetrix Corporation

About DVStation

Pixelmetrix has focused on creating a single self-
contained monitoring station that can analyze thousands
of parameters within hundreds of digital television
signals. Through the use of plug-in modules and parallel
processing, we monitor all these parameters in real time,
simultaneously and continuously. We’ve targeted our
development efforts to insure the quality of the signal,
the integrity of the program service and the delivery of
essential technical information to the right people in a
timely and meaningful manner.

Our engineers began
with a simple premise:
Effective monitoring of
digital television
networks – just as with
telecom networks –
requires the use of real-
time, continuous and
simultaneous evaluation

of hundreds of points along the transmission chain. To
receive this necessary network intelligence, adequate
data collection, analysis and correlation is needed on
three axis – time, layer and geography. Monitoring of all
layers – physical, transport, coding, and quality – is
essential for a complete maintenance picture.

Plug-in modules allow flexibility and accommodate
changes in a fast evolving technical infrastructure. So far,
we’ve focused on three categories of plug-in modules:
physical line interfaces (ASI, SPI, RF, ATM etc.); a
transport stream processor (TSP); and picture quality
processors.

In our design, a line interface module extracts the
MPEG-2 transport stream from the native RF or telecom
signals and passes that data to a TSP – Transport Stream
Processor. Line interface modules provide monitoring
capability on the physical layer. For RF interfaces
(QPSK, QAM, COFDM, 8VSB, etc.) monitoring means to
check carrier level, C/N (carrier-to-noise ratio), bit error
rate and EVM (Error Vector Magnitude), or other
parameters that may be applicable. Additionally, a
simple constellation diagram indicates overall
modulation health.

Our ATM interface connects to a 155 Mb/s optical fiber
and extracts MPEG transport streams from several VP/
VCs (virtual path/virtual circuit). In addition to this basic
functionality, the interface detects physical layer errors
and parameters with the optical and Sonet/SDH signals.

For More Information

To learn more about the DVStation, request a demo, or
learn how Pixelmetrix might help you optimize video
network integrity, contact us today!

On the Internet: sales@pixelmetrix.com
www.pixelmetrix.com

North America: 1-877-71-PIXEL
Europe: +41-79742-7454
Asia Pacific: +65-547-4935

About the Author
Ivan Ng is a Software Project Manager with Pixelmetrix
Corporation, manufacturer of the DVStation, a preventative
monitoring solution for digital broadcast networks.

